
    
 

  

       

      

   

Environmental Health Perspectives doi:10.1289/ehp.1206174 

Supplemental Material 

Projected Impacts of Climate Change on Environmental Suitability for 

Malaria Transmission in West Africa 

Teresa K. Yamana and Elfatih A.B. Eltahir 

Table of Contents  

Figure S1: Schematic of HYDREMATS model   ....................................................................2 
 

Figure S2: Adult mosquito simulation flow   ..........................................................................3 
 

Table S1: Parameters used with entomology model  ..............................................................4 
 

Methods: Development rate of aquatic-stage mosquitoes   .....................................................5 
 

Table S2: Parameters for development rate of   subaquatic mosquitoes  .................................5 
 

Methods: Alternative  EIP  formulation  ..................................................................................6 
 

Figure S3: Timescales of mosquito lifespan and parasite development ................................7
  

Methods: Disaggregation of  CRU data into hourly rainfall time series  ................................8
  

Methods: Summary of   data sources .......................................................................................8
  

       ERA Interim data  ............................................................................................................8 
 

       Vegetation and soil properties  ........................................................................................9
  

Table S3: Summary of data sources  .......................................................................................10
  

Methods: 2080-2099 Precipitation time series  ......................................................................11 
 

Figure S4: Effect of changing rainfall predictions on D, m, and VC  .....................................12 
 

Results: Alternate   EIP  formulation ........................................................................................13 
 

Figure S5:  Summary of changes to D, m, and VC  using alternate  EIP .................................14
  

References ..............................................................................................................................15
  



 
 

 

 

Figure S1: Schematic of HYDREMATS model. This schematic diagram lists the majo  r processes  

and key parameters   represented by the Hydrology, Entomology and Immunology components of  

HYDREMATS.  The arrows represent information that is passed from one component to the   

next.  Model outputs from each component are spatially  and temporally explicit.   The  

immunology component is not used in this paper.  
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Figure S2 Adult mosquito simulation flow.     During each timestep, the model updates each 

individual mosquito as she progresses through her life cycle.  Mosquito attributes are updated as  

they interact with the environment and human agents.  Reprinted from “Hydrology of malaria:   

Model development and application to a Sahelian village,” by Bomblies A, Duchemin JB, Eltahir 

EAB. 2008. Water Resour Res 44.  
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Table S1.  Parameters used in entomology model. 
Variable nominal value units reference sensitivitya 

Aquatic stage simulation 

cannibalism rate 0.0008 hr-1 Koenraadt and Takken (2003) medium 

number of eggs lain per oviposition 150 Detinova and Gillies (1964) low 

egg death rate 0.001 hr-1 none very low 

weight of first-stage larvae 0.02 mg none low 

weight of stage 2 larvae 0.16 mg none medium 

weight of stage 3 larvae 0.3 mg none medium 

weight of stage 4 larvae 0.45 mg none low 

lag time for predators to establish 200 hr Depinay et al. (2004) low 

carrying capacity of pools 100 mg m-2 Depinay et al. (2004) low 

larvae death rate 0.005 hr-1 Hoshen and Morse (2004) very low 

maximum predation rate for larvae 0.02 hr-1 none medium 

pupae predation rate 0.005 hr-1 none very low 

Adult mosquito simulation 

human infection clearing rate 0.0005 hr-1 Hoshen and Morse (2004) very low 

degree days above 18ºC necessary for sporozoites 111 deg-day Detinova (1962) very low 

probability that a mosquito takes a bloodmeal 0.06 none low 

average mosquito flight velocity 25 m hr-1 Costantini et al. (1996b) low 

time required for gametocyte development 336 hr Hoshen and Morse (2004) very low 

weighting of random walk vs. straight line 0.7 none medium 

resting time 48 hr none medium 

threshold distance for visual cues 15 m Gillies (1980) low 

utilization probability of water 0.3 none low 

Adapted from “Hydrology of malaria: Model development and application to a Sahelian village,” by 

Bomblies A, Duchemin JB, Eltahir EAB. 2008. Water Resour Res 44. 
amodel sensitivity to parameter values gauged by maximum simulated mosquito abundance 
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Methods: Development rate of aquatic-stage mosquitoes 

The progression of subadult mosquitoes at each hourly timestep is given by the temperature-

dependent rate, r(Tw), developed by Depinay et al. (2004) based on enzyme kinetics: 

P25°C_Tw_·exp[-tJ.H_~.(-1--....!....)] 
298 R 298 Tw 

r(T w) = -------"-----""-----
l+exv[-6HL ·(-1 _....!....)]+exv[-tJ.HH.(_1 _....!....)] 

R To.SL Tw R To.SH Tw 

[S 1] 

where T is the mean water temperature over the time interval (1 hour); p25oc is the development 

rate at 25°C giVen no temperature inactivation of critical enzyme; M-f"A is the enthalpy of 

activation of the catalyzed reaction; !!J!L and !!J!H are the enthalpy changes due inactivation of 

the enzyme from low and high temperature, respectively; To sL and To sH are the water 

temperatures at which 50% of the enzyme is inactivated by low and high temperature 

respectively; and R= 1.987cal/mol is the universal gas constant. 

Table S2: Parameters for development rate of subaquatic mosquitoes. 

Developmental stage Pzsoc M-l"A !!J{L TosL !!J{H TosH 

Egg 

Larvae 

0.0413 

0.037 

1 

15684 

-170644 

-229902 

288.8 

286.4 

1000000 

822285 

313.3 

310.3 

Pupae 

Adult 

0.034 

0.02 

1 

1000 

-154394 

-75371 

313.8 

293.1 

554707 

388691 

313.8 

313.4 

Reprinted from "A simulation model of African anopheles ecology and population dynamics for the 

analysis of malaria transmission," by Depinay JM, Mbogo CM, Killeen G, Knols B, Beier J, Carlson Jet 

al. 2004. Malaria Journa/3:29. 
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Methods: Alternate EIP  formulation  

In our analysis, we  follow  the  majority of  current  malaria  models  (Craig et  al. 1999;  Ermert  et  al. 

2012;  Guerra  et  al. 2008)  in using the  well-established Detinova  (1962)  curve  for the  extrinsic  

incubation period (EIP) of  Plasmodium  falciparum  in Anopheles  mosquitoes.  However, it  has  

been suggested that  this  curve  does  not  accurately describe  EIP  at  high temperatures  (Ikemoto 

2008;  Paaijmans  et  al. 2009).  Observational  data  of  EIP  at  high temperatures  are  difficult  to 

obtain due  to the  low  rates  of  mosquito survival.  In data  compiled by Boyd comparing  EIP  to 

temperature  (1949), parasite  development  was  possible  at  temperatures  as  high as  35oC, but  was  

interrupted at  37oC due  to mosquito mortality. Two more  recent  studies  have  shown parasite  

development  to be  significantly hindered at  temperatures  above  30oC (Eling et  al. 2001;  Noden 

et  al. 1995).  However a  contradictory study found that  parasites  were  able  to develop in wild 

strain mosquitoes  at  temperature  of  30oC and 32oC, though with decreased survival  (Okech et  al. 

2004).   

Here, we  consider the  alternate  non-linear curve  proposed by Paaijmans  (2009).  The  timescales 

for the  temperature  dependent  processes  for malaria  transmission are  shown in Figure  S3.  At  

temperatures  above  30oC, there  is  a  significant  difference  between the  two EIP  curves;  the  

Detinova  curve  continues  to decrease  while  the  Paaijmans  curve  increases  rapidly.  At  

temperatures  above  34oC, the  Detinova  curve  gives  an EIP  of  just  over 6 days, while  the  

Paaijmans curve indicates that transmission is blocked.  
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Figure S3: Timescales of mosquito lifespan and parasite development.   The two formulations  

of  EIP  are shown in blue (Detinova) and green (Paaijmans) in the upper plot, and the average  

mosquito lifespan is shown in red.  Estimated values for the duration of infectivity (     D) according   

to the two EIPs are shown in the lower plot.  
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Methods: Disaggregation of CRU data into hourly rainfall time series  

The  environmental  processes  simulated by HYDREMATS  require  meteorological  inputs  at  high 

temporal  resolution.  The  mean  baseline  rainfall  from  CRU  required  disaggregation  into hourly 

resolution before  being used as  an input.  The  spatio-temporal  dissagregation of  rainfall  for 

hydrological  applications  is  a  well  researched problem, and is  often done  using various  statistical 

models  parameterized by assumed or observed characteristics  of  finer scale  rainfall  events  (for 

example  Bo et  al. 1994;  Mackay et  al. 2001;  Margulis  2001;  Segond et  al. 2007).  Here,  we  take  

advantage  of  high resolution satellite  observations  of  rainfall  from  the  Climate  Prediction Center 

Morphing Technique  (CMORPH)  data  set, which gives  ~8km  resolution rainfall  data  every 30 

minutes  (Joyce  et  al. 2004).  After applying the  bias-correction described in Yamana  and Eltahir 

(2011), we  use  the  hourly rainfall  observations  from  CMORPH  data  at  each village  to 

disaggregate  baseline  CRU  rainfall  into realistic  storm  events.  The  result  is  an hourly rainfall  

time  series  with mean annual  rainfall  equal  to long-term  observations  from  CRU, and patterns  of  

hourly rainfall observations from CMORPH.  

Methods: Summary of  data sources  

ERA Interim data  

Temperature, wind speed, wind direction, and radiation data  were  taken from  the  ERA  Interim  

data  set  (Dee  et  al. 2011)  for the  grid cell  containing each village  being simulated;  we  assume  

uniform  conditions  within the  0.75 degree  ERA  grid cell.   ERA  Interim  data  were  adjusted for 

HYDREMATS  as  follows.  Wind speed was  brought  from  10 m  to 2 m   by assuming a  

logarithmic  profile.  Wind and radiation data  were  linearly extrapolated from  the  3-hour 

resolution provided by ERA to the 1-hour resolution required by HYDREMATS.  
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A comparison of the diurnal temperature cycles given by ERA Interim and ground observations 

at three locations across ecoclimate zones in our study region (Banizoumbou, Niger; Agoufou, 

Mali; and Djougou, Benin) indicated that while the reanalysis data gave good estimates of the 

daily mean temperature, the diurnal range was underestimated. The regression coefficients 

below were calculated using the diurnal temperature ranges of the three ground stations over one 

year and applied to daily ERA temperature ranges: 

Rcorrected = RERA × 1.03 + 5.25C° 

The maximum and minimum daily temperatures were then computed as the daily temperature 

mean from ERA plus or minus the corrected range divided by two. The hourly temperature was 

calculated assuming a sinusoidal curve during daylight hours and an exponential decrease 

between sunset and sunrise, as described in Paaijmans et al.(2009) 

Vegetation and soil properties  

The  dominant  vegetation type  at  each location was  obtained from  the  University of  Maryland 

Land Cover Classification  (Hansen et  al. 2000).  Soil  properties  were  taken from  the  Harmonized 

World Soil  Database  (FAO  and ISRIC).  A  thin layer of  low-permeability soil  is  included in the  

model  to account  for soil  crusting that  occurs  throughout  West  Africa  under cultivated conditions  

(Morin 1993).   
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Table S3. Summary of data sources.   
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 Data  source  Spatial  Temporal  Reference  
resolution  resolution  

Baseline  Climatology      
temperature  CRU  TS  3.1  0.5 x 0.5 degree  1 month  Mitchell  and  

Jones,  2005  
rainfall  CRU  TS  3.1  0.5  x 0.5  degree  1 month  Mitchell  and  

Jones,  2005  
Meteorological  Inputs      
for  HYDREMATS  
Simulation  
precipitation  CMORPH  ~8km  30 min  Joyce  et  al.,  2004  
temperature  ERA-Interim  .75 x .75 degree  3 hour  Dee  et  al.,  2011  
wind  speed  ERA-Interim  .75 x .75 degree  3 hour  Dee  et  al.,  2011  
wind  direction  ERA-Interim  .75 x .75 degree  3 hour  Dee  et  al.,  2011  
surface  radiation  ERA-Interim  .75 x .75 degree  3 hour  Dee  et  al.,  2011  
Other  HYDREMATS      
inputs  
soil  type  HWSD  ~1km   FAO,  2009  
vegetation  UMD landcover  1km   Hansen  et  al.,  

2000  
topography  Computed  from  Envisat  synthetic  10 m   Toutin and Gray,  

aperture  radar and  ground  survey  2000;  Bomblies  et  
al.  2008  

household locations  Quickbird  image  0.6 m   Bomblies  et  al.  
2008  

Climate  predictions      
Rainfall  and  Various  climate models  (See  Range  from  1.4  1 month  IPCC,  2011  
temperature anomalies  Table  2)  from  IPCC  AR4  x 1.4 degree  to 
2080-2099  emissions  scenario  A1B  3.9 x 3.9 degree   
 



 
 

Methods: 2080-2099 Precipitation time series  

We assume  that  climate  change  will  take  the  form  of  shifts  of  the  rainfall  gradient, based on the  

observation that  historical  changes  in rainfall  regimes  in this  region took the  form  of  northward 

or southward shifts  of  the  rainfall  gradient  (Bomblies  and Eltahir 2010;  Irizarry-Ortiz  et  al. 

2003).   The  2080-2099 precipitation time  series  were  created by selecting a  grid cell  directly 

north (for decreased rainfall  scenarios) or south (for increased rainfall  scenarios) of  each site  

where  rainfall  is  currently  equal  to the  annual  rainfall  predicted by a  GCM  for 2080-2099.  For 

example, the  village  selected to represent  Zone  2 is  located at  15.05N, 8.33E, where  the  baseline  

rainfall  is  259 mm/year.  Applying the  predicted changes  from  the  GCMs, the  dry scenario 

should have  an average  rainfall  of  53 mm/year and the  wet  scenario should have  an average  

rainfall  of  366 mm/year.  The  rainfall  time  series  for the  wet  scenario comes  from  a  location 

south of  our village, at  14.25N, 8.33E  where  current  rainfall  averages  approximately 366  

mm/year.  Rainfall  inputs  for the  dry scenario come  from  a  location north of  our village  at  

19.25N, 8.33E  where  current  rainfall  averages  54 mm/year.   We  again disaggregate  the  coarse  

resolution rainfall data by applying the hourly patterns of rainfall observed by CMORPH.    
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Figure S4. Estimated effect of changing rainfall predictions on D, m, and VC. Weekly 

average values based on simulations for D (the duration of infective life, column 1, in days), m 

(mosquito density, column 2, the number of mosquitoes per human), and VC (vectorial capacity, 

column 3, the average number of human inoculations of a parasite originating from a single case 

of malaria if all vectors biting the original case became infected) as a result of changes in rainfall 

only, from Zone 1 (top row) through Zone 5 (bottom row).  Simulation-based estimates at 

baseline (1980-1999) and for 2080-2099 according to the wet and dry climate change scenarios 

for each zone are shown in blue, green, and red, respectively.  
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Results: Alternate EIP  formulation  

Simulations  using the  alternate  EIP  (Paaijmans  2009) generally had  lower D,  and thus  lower  VC,  

throughout  West  Africa, with the  effect  being most  pronounced in the  hottest  regions  (Zones  1 

and 2). While  the  magnitudes  of  the  values  are  lowered, the  overall  observations  in terms  of  

seasonality, difference  between zones, and differences  between current  and future  climates  

remain largely unchanged.  

When we  average  the  changes  over the  seven-year simulation  period, shown in  Figure  S4, the  

results  are  again very similar to our original  findings.  The  main differences  are  in the  dry-hot  

scenarios  in Zones  4 and 5;  while  the  warming leads  to slight  increases  in vectorial  capacity 

using Detinova equation for EIP, there is a slight decrease in VC  using the Paaijmans equation.  
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Figure S5:   Summary of changes to D, m, and  VC  using the alternate   EIP.   Mean changes in 

vectorial capacity over 7-year simulations for the wet-warm (top) and dry-hot (bottom)  climate 

change scenarios for climatic zones 1 through 5 (Sahelo-Saharan to Guinea Coast respectively)  

using the Paaijmans (2009) equation for    EIP. Note the abbreviated vertical axis in the top figure.   
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